- The Dynamics of Variable Sba,:r-sag3

“R. F. CHRISTY

Californis Institute of Technology, Pasadena, California

=h

v

[
X u%ﬁﬁ.‘l}i \a,t the

Natdemal . Meet:mg of gmetr (N
éSOcmy for Industwial and Applied Methemedsiw

~~~~~ “idune 13, 1967
~V;Washington s D_.C. N

}

GPO PRICE '$

CFST! PRICE(S) $

Hard copy (HC) _
Microfiche {(MF) _

ff 653 July 65

*
Supported in part by the National Aeronaubics and Space Administration
Grant [NsG—MQo’l and by the %flce of Naval Research Contrach

[mom--eao(ln)} ol W
N 68- 2 v467
(Accsss:?l (TZ)

(CODE)

Q57280  -=0

{NASA CR OR TMX OR AD NUM EGORY)

FACILITY FORM 602



.

ABSTRACT

Several closely related classes of variable siars == here called
Cepheid variables -~ have long been known, as a result of detailed obser=-
vation, to be vibrating in a spherically symmetric dilational mode,  The
purpose of the work described here has been to understand this motion and
therevy to be able to apply the extensive data on variable stars in
avugnenting bur knowledge of the stars.

The coupled equations of spherical hydrodynamics and radiation
diffusion have been solved numerically as an initial value problem for a
variety of stellar models. Unstable models show a growing amplitude of
pulsation vhich ultimately levels off at a stable maximum emplitude of
periodic motion, This final mobtion and the associated large suplitude
light variation agree closely with observed varisbles. Check calculations
show that the resulis are reliable,

The interior dynemics have been examined in order to find the
physicsl cause of the instabllity and also in order 4o understand
peculiar secondary features of the pulsation., In addition, overtone
pulsation in the first radial overtone has been studied, In a few cases,
the instability can lead to stable large smplliude periodic motion in
either the fundamental or the first overtone, depending on the initial

conditions,
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INTRODUCTION
Since there have recently appeared a number of detailed papers (1, 2,
3, &4, 5, 6) and extensive reviews (7, 8, 9, 10, ll)<of different aspects of
this problem, this paper will mere1y outline7the essentials and will, to é
large extent, be in the nature of an introduction to these other published

works.

THE PHYSICAL SYSTEM

For our purposes here, the star is a spherical mass of gas =~
primarily a mixture of hydrogen end helium -~ which is contained by its
self-gravitation, A temperature gradient and flow of heat from the
interioxr to fhe surface are maintained by nuclear reactions in the hot
central region, The exterior surface is a free surface which radiates
the heat arriving from the interior,

The surface temperatures of the Cepheid variables are in the range
from %000%K to €000°K where the principal gases are primarily unionized,
and atomic, Below the surface, the temperature rapidly rises to lOOOOOK
where hydrogen jonizes, then to %0000°K where helium becomes completely
ionized, The temperature continues to rise as the density increases

4o 2078 gn/ce ==

toward the interior but the density is so low == ~ 10
that the various constituents behave as perfect gases with, however, a
specific heat with large peaks near the temperatures where ionization
takes place.

The means of heat transport throughout nearly all of the ster is

radiative diffusion, This is controlled by the mean radiative mean free

path or its inverse, the opacity k. t the surface, the mean free path
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becomes long as heat is rediated to infinity., In the region of 10000°K
to QOOOOOK, there is a thin region that is usually unstable to free con-
vection. It appears, however, that the actual heat transport by such
convection is usually small in the Cepheid veriables and will be neglected
in this discussion.

The principal physical complicatioﬁs are found in the opacity & and
~in the internal energy of the gas in(the regions of partial lonization.
The dominent characteristic of k is a very rapid increase (~ 192) with T
wp to T~ 1ou oK, followed by a decrease (k ~ J%ﬂ for higher tempera-
tures.  This large peak in the opacity leads to Z very thin zone neaxr
l()l‘L %k where the temperature rapidly rises fran its photospheric value of
~ 6000°K to about QOOOOOK. The exceedingly large temperature gradient in
this region is the source of the principal difficulties in the treatment

of the problem,

THE EQUATICGNS OF MOTTON
In a Iagrangisn system, the mass, M(r), interior to r is the inde-

pendent space variable, It is

M(r) = [ bee'® pr') art ,

O

where p(r) is the density. The equation of motion of an element of

mass is

2
o r - _eMx) 2 an;;’t) , (1)

o2 e

where G is the constant of gravitation and P is the pressure.
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The radiative diffusion flux IL{r) pessing radius r is

2 L
We) = - (e®) mtTm L (2)

vhere ¢ is the Stefan-Boltzmann constent, w(p,T) is the opacity, and T

is the temperature. The heat diffusion equation is then

T 'ési'gég‘)‘ = "%}% + G(p,T) ’ (3)

where S is the entropy, and € the nuclear energy source.
At the free surface M(r) =M (r = RO), we use the boundary con-
" @ition P = O in the equation of motion, The radiative boundary con-
dition is
a(rh ot

dar ~  const
surface ¢ ¢

surface

vhere T is the optical depth. We have used the value 2/3 for the con-
stant in order to simulate the results of the solubtion of the transport
equation at a free surface,

Because of the rapid increase in density near the core of the star,
the amplitude of oscillation becomes very small inside r = % o This
permits the introduction of a rigid boundary at a small but {inite inner
radius which is outside the sources of stellar energy. There results the
boundary condition ; =0 and L = Lb’ the mean luminosity at this inner

boundary. This elimination of the central region considerably simplifies

the calculations.
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THE LINEAR CALCULATIONS

By setting time derivatives equal to zero in equations (1) and (3),
we get equations which, together with the equation of state relating p, p,
and T, describe the static structure of the stellar envelope (that part of
the star outside the central core). This structure is characterized by
p ~ ™% over much of the envelope and T (%-- é%) éxcepf in the narrow

“region of ablarge temperature gradient, The essentgals of the temperature
distribution are shown in Figure 1,

The first treatments of thls problem considered the llnearized
equations resulting from the assumption of small, sinusoidal oscillations
about equilibrium. In addition, en adiabatic assumption was made in vhich
the deviations from equilibrium were treated as adiabatic with i) =7 %g .

b
If the deviation in radius is written r =r_ (1 + t(x,t)) vhere

it
X = rO/Ro and £ ~ e s we get

b o

3.3
LA .
X

2
at
._.g. + (4 - V(%)) 56 T) w

vhere

Po(x) G M(x)

V(X) = PO(X) - Ro

and G is the constant of gravitation,

This equation is an eigenvalue equation for the freguency w and
leads to the emplitude function §&(x). In addition, it is possible to
calculate the rate of change of the oscillation energy W by a perturba-

tion procedure, It is



M
%’}1 - %’- g (7-1) §§ (8¢ - d(ar/amM)) au

which shows that the system can be excited or damped by the wariation in
miclear energy production or in the radiation absorption during the
oscillation, |

For the stars of interest, the amplitude is too small near x = 0
(vhere the nuclear energy is produced) for a significant contribution from
b€, The dependence of opacity 1c4 on temperature and density throughout
mich of the envelope leads t0 a decrease of opacity on compression which
implies a damping of vibration. It is only in the surface layers whexre gk
behaves differently and vhere the adiabatic assumption fails that excita-
tion can arise, We will see later that the excitation arises in the region
of partial ionization of helium and in the region of the steep temperature
"front" vhere hydrogen is pertly ionized, This temperature fronmt is not
well-treated in the linear theory since the amplitude is there locally
s0 large, A betber picture of the variabion in this region is to regard

it as a moving front which oscillates back and forth in the star.

THE NON~LINEAR METHOD
In order to treat better the surface regions of very large rela-
tive amplitude and to study the behavior of an actual large amplitude
varisble star, non-linear calculations were initiated. In this method,
the envelope is divided into a series of spvherical shells of carefully
chosen relative mass. The equations of motion then become coupled ”

differential equaticns for the motion and temperature variation of these
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mass shells, These equations are then integrated numeriéally in time from
some initial conditions. The radiation diffusion equation was treated by
an implicit differencing method to guarantee stability and the hydro-
dynamics was treated by an explicit prdcedure in vhich the time step was
controlled by the Courant condition, which, for stability reasons, restricﬁs
&5 to a value less than the time for sound t0 cross a zone. The exact
equation of state and opacity law were used in tabular form,

The major problem in this calculation results from the steep
temperature front which coincides with an important source of excitation
in the star. - Any attempt to use sufficiently fine zones to give an adequate
descriptién of this region leads to such short time steps that the calcu-
lation became impractical, requiring about one hour, on an IBM 709%, for
one pericd of vibration, After considerable study, it was found that a
description in terms of thiék zones (COnsiderably thicker than the front
itself) could be used provided a trensparency average of opacity of neigh~

2 1 1

boring zones was used = P i Actually, a somevwhat more compli-
1 2 :

cated average of this type was used vhich was constructed to agree with

s

exact integrations of the equation of heat flow on both sides of the front
even for large differences of temperature (8). The points marked x in
Figure 1 show that this procedure was succegsful in integrating through
the front with very few steps. This procedure is satisfactory only if
the vibration am;gli’cude is large enough so thet the front crosses several
zones in one pericd, For very small amplitude, the procedure is, in
general, not precise and the results depend to some extent on the exact
location of the fromt with respect to the coarse zones, In the problems

of interest, the lerge amplitude condition was satisfactorily fulfilled
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with a description in terms of about 40 zones for the entire envelope.
This pexmitted two time steps per second and sbout one period of vibra-
tion in one minute on an IBM 709%. The genéral temperature distribution
in an equilibrium model is shown in Figu.re 2, The zones were thin near
the stellar surface and increased steadily (by @bout a factor 1.k in mass
per zone) toward the interior. This permitted considerable detail (about
15 zones) in the regions near the surface which cause the excitation.
Abou_ct 15 zones in the region of important dissipation and about 10 further

zones in the region of very small amplitude leading to the rigid boundary.

TEMPORAL BEHAVIOR CF THE SYSTEM

The system of equations was integrated numerically by first inte-
grating the corresponding equilibrivm equations in order to arrive at a
static model for the initial condition of the dynamics. The usuval method
of initiating the dynamics was to superpose on the static model some pre-
seribed run of z.'(M). These initial velocities were ususlly chosen so as
to approximate the velocities in a linear mode of vibration and with a
large enough amplitude t0 minimize the time for the non-linesr integrations.

Folloying initiation in this way, if the velocity distribution was
well chosen, there results an approxima'bely pericdic vibration of the
system vhich yas found to slowly decay in amplitude, for a stable model 3
or slowly grow in amplitude for an unstable mcdel, Together with the slow
growth in amplitude, the solution also approximates better and better to
periodicity as the unvented modes contemineting the principal mode (msually
the fundemental) slowly decay. After some growth in amplitude (usually at

least quadrupling the energy of vibration), the amplitude approaches an



asymptotic limit characterizing the physical system (see Figure 3). In
this limit, the motion is non-sinusoidal throughout the star, even where
the amplitude is small., Near the surface, the material velocities exceed
sonic by a factor of 2 to 4 and shock waves may, in some cases, be seen.
They were treated by the Von Neumenn-Richtmyer arxtificial viscosiby method,
The model envelopes considered here are characterized by parameters
giving the mass M, radius R , surface temperature T, (or mean luminosity
Ib)Aand a chemical composition specifying the ratio of helium to hydrogen.
In this parameter space, the region of instability has been approximately
delineated by numerous integrations with différing models., In addition,
the néturé of the non~linear motions has been studied, This has permitted
a better understanding of some aspects of the problem and also the deter-
mination of some of the physical parameters by fitting calculated models

t0 observation.

THE CAUSE AND LIMITATION OF INSTABILITY
In order to explore the sources of excitation and dissipation,

P-V diagrams were drawn for each zone in a typical example, The diagranms
for a few representative zones are shown in Figure 4, Zone 22 is typical
of the dissipating region where the motion is quasi-adiabatic. Zones 26,
27, and 28 are typical of the excitation found in the region of partial
helium ionization near 40000°K. Zone 32 is typical of the excitation in
the region of the steep front vwhich moves over several zones and gives a
strong excitation near 1000O°K. The net effects of all zones are shown in
Figure 5, The dissipation in the zones 10 to 25 has alresdy been explained

in terms of the decrease in opacity and consequent increased heat flow when
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compressed., The excitation in the helium zone is due tq two causes ==
8 peculiar behavior of ﬁﬂe opacity law and the very high heat capacity
which keeps this region relatively cooler on compression and leads to
heat absorption at that phase. The excitation in the hydrogen zone is
associated with the strong increase of opacity, leading to.trapping the
heat flux on compression.

The limitation of amplitude is shown in Figure 6 where the total
excitation and total dissipation are shown as a funchtion of amplibude -~
the amplitude was artificially carried to a valve in excess of the true
limiting amplitude (wvhere the difference between the ¢xcitation and dissi-
pation vanishes) by inserting a growth factor into the calculation. It
appears that the principal levelling off is in the excitation due to the
helium zone, It was found by further investigation that this was asso~
ciated with the amplitude becoming so large In this zone that the duration
of outward acceleration bécame very small and a very large pressure peak
developed., This, in turn, made the temperature rise sO far that the
opacity decreased and the excitation was diminished in the helium zone,

Because the excitation arises in the layers of partial hydrogen and
helium ionization which are quite near the stellar surface, we can under-
stand vwhy the excitation is confined to a narrow range of surface tempera-
tures (5000°%K - 7000°K). For hotter stars, the zones of partial ionization
are too thin and have too little heat capacity to be able to act effectively.
For cooler stars, the zones are so thick that they tend to act nearly
adiabatically. ‘In addition, the behavior in the hydrogen zone is cémpli—
cated by the development of convective heat tfansport in the cooler stars.
Until now, the calculations have not been able to treat this form of heat

flow and the behavior bf cool envelopes is still not understocd.
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OVERTONE BEHAVICR

One of the interes:ting non-linear results relates to the excitation
of the first radial overtone. In the linear cslculations, both the funda-~
mental, the first radial overtone and higher overtones are strongly excited
in the same instability region.

Observed stars, on the other hand, show motion in the fundamental
and, in certain cases, motion in the first overtone but only on the high
temperature side of the instability region.

The non-linear models showed a behavior similar to the cobservations.
For a high ratio of luminosity to mass, the whole width (‘:Ln mean surface
temperature) of the instability region is occupied by models which, at
large smplitude, persist in vibration in the fundamental mode. For a low
ratio of luminosity to mass, the width of the instability region is occupied
by models which, at large amplitude, persist in vibration in the first over-
tone. For intermediate ratios of luminosity to mass, the high surface
temperature models show persistent vibration in the first overtone while
the lower swrface temperature models show persistent vibration in the
fundamental mode.,

The dividing line (in mean surface temperature) between these types
is of specisl interest bubt could only be explored somewhat crudely. Never-
theless, certain medels were found vhich, if initiated at intermediate
amplitude in the fundamental, the fundamental would grow and contamination
of the first overtone would decay. On the other hand, if the same model
was initiated a'b intermediate amplitude in the first ovexrtone, the ia‘bter
would grow and contamination due to the fundamental would decay. In other
words, for these models, the final large amplitude vibration depends on the

history of the systen.
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This non~linear behavior of the calculation is qpife consistent
with observation of the é%ars and served as the basis of a determination
of stellar luminosity (5) by matching calculations to observetion. Never-
theless, a deeper understanding is still lacking of the reasons the system

prefers one mode or the other.

SECONDARY NON-LINEAR EFFECTS

Certain stars show, in addition to the principal peak in luminosity,
a secondary smaller peak somevwhat later iIn the cycle. Vhen it was realized
that this secondary peek also appears in the observed surface velocities
in several oObserved cases, an effort was made to find models which showed
this effect and to investigate its cause. The cause was revealed by two
different studies., In Figure 7 are shown velocitieg for all zones in a
k2 zone model when vibrating at constant amplitude in the fundamental, The
zeros of successive curves are displaced and, in addition, the scale is
progressively enhanced from zone 42 (the outside) to zone 2 (the inside)
by a factor reaching 1600. The secondary peak in oubward velocity appears
in the surface zone at phase 0.4 delayed by about 0.k period after the main
vhase of outward acceleration at phase 0.0, The motion ih the intermediate
2ones (near 30) shows some epproximation to sinusoidal behavior but in the
deep interior {zones 2 to 10) the motion consists of a brief impulse each
period, The cause of this impulsive motion at the center neaxr phase 0.5
has been traced to the high-pressure signal associated with the outward
acceleration peék some half period earlier at phase 0.0, This is féirly
clear in the figure where the signal can be traced inward. It has also

been checked in a model by following the motion from initiation where the
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impulsive behavior near the center first appears after the first high-
pressure peak in the outer layers. The signal can be further traced out-
ward again from the center wntil it reaches the surface and leads to the
secondary velocity peak and outward acceleration which can be described as
an echo of the principal outward acceleration peak sbout 1,k periods earlier.
The delay of the secondary peak (here 1.k periods) depends on the
ratio of the time for sound to traverse the envelope to the ﬁeriod of the
motion, This ratio, in turn, depends on the_structure‘of the envelope and
is closely determined by the run of the function V(x) in equation (k).
In addition to interest in understanding the non-linear features,
the abili%y t0 caleulate a feature of this kind can be used to determine
the basic parameters of the model that agrees with the observed star. From
equation (4), we see that for a given envelope structure (specified by V(x))
the pefiod ® RS/Q/M;/Q. In addition, determining the delay of the echo,
determines the run of V(x) and thereby determines M/R on which the echo
delay is principally dependent. 7The two measurements then give both M and R.
If these are combined with measurements of the mean surface temperature,
the mean luminosity Lb is given, In this way, the non—linear calculetions

can be used to debermine all of the significant parameters of the star.

CONCLUSION
Non~linear dynamical calculation of stellar pulsation has been used
to reveal the rhysical explanation of the behavior of the system. In addi-‘
tion, the calculation and understanding of non-linear aspects of behavior

~ has been used to determine masses, redii, and luminosities of stars.
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A wealth of different feabures are known in actual Cepheid-type
varizble stars and some &f these features are still unexplored. The
possible existence of persistent large amplitude mixtures of different
overtones is suggested by dbservation but not yet studied. A related
question is "Are there other forms of non-periodic solutions?” In one
case, the large amplitude motion led ultimately to a motion ﬁhere alter-
nate periods showed larger and smaller amplitude =~ a double periodicity
effect, Similar behavior is seen in some stars but it is still not
explored or understood., In one example, such a strong outward shock
developed each period that the ouﬁermost wags zones were successively
driven off from the star. Such possible mass ejection resulting from
pulsation is of great interest but is, as yet, quite unexplored by any
reliable calculations., Finally, the instability of low~surface tempera-
ture models vhere free convection is important is still unexplored although

variable gtars in this region are kunown to exist.



10,

-16-

REFERENCES

. Baker and R. Kippenhahn, Z. f. Astrophys. Sk, 11k (1962).
. P. Cox, Astrophys. J. 138, 487 (1963),

. Beker and R. Kippenhehn, Astrophys. J. 142, 868 (1965).

W =

. F. Christy, Rev. Mod. Phys. 36, 555 (1964).

R, F. cnristy, Astrophys. J. Mk, 108 (1966).

A. N. Cox, R. R. Brownlee, and D. D, Eilers, Astrophys. J. h ) 102k
(1966).

R. F. Christy, Ann. Rev, Astron, and Astrophys. L, 353 (1966).

R. F. Ch;t:'isty, Methods in Computational Physics 7, 191 (1966).

S. A. Zhevekin, Amn, Rev. Astron. and Astrophys. 1, 367 (1963).

R. F. Christy, Aercdynamic Fhenomena in Stellar Abtmospheres, éd. R. N,

Thomas (Academic Press, 1967), p. 105,

J. Cox, Aerodynamic Phenomena in Stellar Atmospheres, ed. R. N. Thomas,

(Academic Press, 1967), p. 3.



Fig. 1

Fig. 2:

Fig. 3:

Fig, k:

Fig. 5t

Fig. 6:

Fig, 7:

-17-

FIGURE CAPTICNS

The solid curve is the loglo T vs. lOgio P for a fine mass
division., The points x are the results of a 38 mass zone stabic
model,

The log,, T (°K) of the mass zones Of a static model. The
amplitude of the final variation is shown by the dashed line.
The growth of amplitude for the first 20 periods of a model,

The emerging luminosity, surface velocity, and photospheric
radius are shown.

P-V diagrams for mess zones 32, 30, 28, 27, 26, 2k, and 22, The
abseclssa is the tobtal volume occupied by each mass zone.

The energy production and dissipation for all zones., Positive
ordinates are work production and negative ordinates are dissi~
pation.

The variation with amplitude of the work production in different
regions and of the tobal dissipation. The amplitude is measured
by the total kinetic energy of the motion at its peak.
Velocities of 2ll zones in a 42 zone model. Zone 42 is the
outermost and zone 2 the innermost. The actual amplitude at
zone 42 is 4 27 km/sec. The scale of the inmer zones is pro-
gressively enhanced and the actual amplitude at zone 2 is

+ 0,007 ku/sec,
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